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ABSTRACT
In the past decade, control of dynamical systems with classi-
cal and advanced controls such as optimal control, adaptive
control and Fuzzy logic. These controls have been investi-
gated extensively to identify which is the appropriate control
to use during the dynamical processes of mitosis and meio-
sis in biology processes.However, the above controls use a
fractal control which cannot be used, our investigation has
identified that a classic approach is needed. This paper pro-
vides a new approach and may be the first in systematically
dealing with fractal controls. One of the most important
aspects of model cell biology is the understanding of com-
plicated dynamical processes that take place such as mitosis,
meiosis and duplication. This paper presents the methods
used for modeling and controlling a biology process such as
mitosis, meiosis and duplication. This approach is inspired
from the Julia process. Simulation results have illustrated
the effectiveness of the proposed schemes.
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1. INTRODUCTION
Fractal processes are used extensively for modeling different
processes in Nature as well as for identifying biology pro-
cesses. Many analysis and synthesis classes for fractal pro-
cesses have been proposed, such as Iterated Function Sys-
tems, Iterated Complex Functions, Linder Mayer Systems,
and Geometry objects, etc....

In recent years, studies have shown that embedded in a Ju-
lia set there hides an intricate regular structure [1], thus the
fractal theory is enriched[2],[3]. The many approaches intro-
duced to construct the Julia set has created a platform for
extensive research and experiment. It was the introduction
of Gaston Julia’s methods which has allowed scholars such as
Lahtakia to identify methods of constructing a switched Ju-
lia set. Also, Michelistsch and Rössler developed a method

of constructing the Julia set using a simple non analytic
complex mapping. Alan Norton managed to display the spa-
tial Julia sets in 4-D quaternion, using a boundary tracking
method [4]. Ping Liu et al identified how to control and syn-
chronize a Julia set in a coupled map lattice using gradient
and optimal controls[5]. Pickover, Hooper and Philip stud-
ied the non boundary region fractal structure of Mandelbrot
set. In this paper, an approach is proposed for a new class of
controls using fractal processes based on an iterated complex
function inspired from Julia process. Different methods for
control have been developed such as: sliding mode control,
backstepping control, adaptive control, bang-bang optimal
control, etc.... All those methods are used for nonlinear dy-
namic systems unlike biology processes. Which controls do
biology processes use to make replication, duplication, di-
vision, metamorphoses and multiplication? also this paper
will explain the importance of biological processes by iden-
tifying whether mitosis and meiosis processes have a fractal
structure.

Section 1 presents the three different algorithms used through-
out this paper. In Section 2 we elaborated a fractal cell by
given a non linear dynamic system based on fractal processes
and transformation. Section 3 gives an overview of processes
of cell division in genetical biology. Then, section 4 presents
four theorems with the use of mathematical proofs. Section
5 shows how some algorithms of control were implemented
to simulate mitosis, duplicate and metamorphoses processes
in the cell fractal model. Finally, section 6 concludes this
paper.

2. FRACTAL ALGORITHM
This section shows how algorithms were inspired from Julia
processes starting by explaining the iterative map of Julia.

In 1919, Gaston Julia put forward the simple iterative map[1]

Zn+1 = Z2
n + Zc (1)

The properties used to generate Julia processes are well
known , these are:

• The Julia set is a repellor.

• The Julia set is invariant.

• An orbit on Julia set is either periodic or chaotic.

• All unstable periodic points are on Julia set.
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• The Julia set is either wholly connected or wholly dis-
connected.

• All sets generated only with Julia sets combination
have fractal structure[8].

We study Julia sets of polynomials of the form

{

xi+1 = x2
i − y2

i + xc

yi+1 = xiyi + yc
(2)

To find the inverse map, one must find expressions for xi and
yi in terms xi+1 and yi+1. After computation we obtain

{

xi = ±
√

√

(xi+1 − xc)2 + (yi+1 − yc)2 + (xi+1 − xc)

yi =
yi+1−yc

2xi

(3)

For all states (xi+1, yi+1) = PJ(xi, yi) we modified the sys-
tem above in three cases as follows:

• PROCESS P

Let f , g and h mathematic at function.

{

xi = ±g[f(xi+1 − xc)
2 + (yi+1 − yc)

2 + (xi+1 − xc)]

yi =
yi+1−yc

2xi

(4)

{

yi+1 = h[f [(xi)
2 + (yi)

2]− xi

2
]

xi+1 = yi

2xi+1

(5)

• PROCESS P1

PJ is Julia process (xi+1, yi+1) = PJ(xi, yi) we modi-
fied the input states as follows:

{

ui = αxi + β
vi = λyi + µ

(6)

we used P1 when we execute the process (ui+1, vi+1) =
P1(ui, vi)

• PROCESS P2

we used P2 when we execute the process

{

ui = ±
√

√

(ui+1)2 + (vi+1)2 + (ui+1)

vi =
vi+1

2ui

(7)

We noted P1, P2 and P

2.1 Algoritm of Process P
In this subsection, we present three algorithms that we will
use in the this paper

Algorithm 1 (yi+1, xi+1) = P (xi − xc, yi − yc)

1: if xi < xc then
2: xi+1 = g[f [(xi − xc)

2 + (yi − yc)
2] + xi

2
]

3: yi+1 = yi−yc

2xi+1

4: end if
5: if xi = xc then

6: xi+1 =
√

|yi−yc|
2

7: if xi > 0 then
8: xi+1 = yi−yc

2yi+1

9: end if
10: if xi < 0 then
11: yi+1 = 0
12: end if
13: end if
14: if xi > xc then
15: yi+1 = h[f [(xi − xc)

2 + (yi − yc)
2]− xi

2
]

16: xi+1 = yi−yc

2xi+1

17: if yi < yc then
18: yi+1 = −yi+1

19: end if
20: end if

2.2 Algoritm of Process P1

The listing of algorithm P1 is as follows:

Algorithm 2 (yi+1, xi+1) = P1(α1xi + β1, α2yi + β2)

1: if α1xi < +β1 then

2: xi+1 =
√

√

(α1xi + β1)2 + (α2yi + β2)2 + α1xi+β1

2

3: yi+1 = α2yi+β2

2xi+1

4: end if
5: if α1xi = +β1 then

6: xi+1 =
√

|α2yi+β2|
2

7: if α1xi + β1 > 0 then
8: xi+1 = α2yi+β2

2yi+1

9: end if
10: if α1xi + β1 < 0 then
11: yi+1 = 0
12: end if
13: end if
14: if α1xi > +β1 then

15: yi+1 =
√

√

(α1xi + β1)2 + (α2yi + β2)2 −
α1xi+β1

2

16: xi+1 = α2yi+β2

2xi+1

17: if α2yi < +β2 then
18: yi+1 = −yi+1

19: end if
20: end if

2.3 Algoritm of Process P2
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Algorithm 3 (yi+1, xi+1) = P2(xi, yi)

1: if xi < 0 then

2: xi+1 =
√

√

(xi)2 + (yi)2 + xi

2

3: yi+1 = yi

2xi+1

4: end if
5: if xi = 0 then

6: xi+1 =
√

|yi|
2

7: if xi > 0 then
8: xi+1 = yi

2yi+1

9: end if
10: if xi < 0 then
11: yi+1 = 0
12: end if
13: end if
14: if xi > 0 then

15: yi+1 =
√

√

(xi)2 + (yi)2 −
xi

2

16: xi+1 = yi

2xi+1

17: if yi < 0 then
18: yi+1 = −yi+1

19: end if
20: end if

In this paper, we show how the biology process on fractals
can be described and modeled.

3. MATHEMATIC FORMULATION OF FRAC-
TAL CELL

We form a fractal cell by combining fractal processes with
transformation.

Let E be the complete metric unit, Φ a system of nonlinear
dynamic processes of E in E such as:

E → E

Φ:(xi, yi)→ (xm, ym)

The system of nonlinear dynamic processes recurrent itera-
tive Φ is represented by:

Φ











































































(x0, y0)
(x1,1, y1,1) = P1(αx0 + γ, βy0 + λ)
(x2,2, y2,2) = P2(x1,1, y1,1)
...
(xi+1,T1

, yi+1,T1
) = T1(xi,j−1, yi,j−1)

(xi+2,j , yi+2,j) = Pj(xi+1,T1
, yi+1,T1

)
...
(xi+2,n, yi+2,n) = Tk(xi+1,n−1, yi+1,n−1)
...
(xi+1,m, yi+1,m) = Pm(xi,m−1, yi,m−1)

(8)

The dynamics of the fractal cell is managed by the assign-
ment of xi+1 in xi and of yi+1 in yi.

{

xi ← xi+1

yi ← yi+1
(9)

The system (8) is a combination of different transformations
and different processes. It consists of m equations and k
changes, so m − k process for n iterations where the first
iteration is (x0, y0).

3.1 Model of fractal process
In this part one presents a simple example of a fractal pro-
cess generated by a combination of algorithm P1.

3.2 Model 1
Let Φ1 a fractal process defined by:

E → E

Φ1:(xi, yi)→ (xi+4, yi+4)

with

Φ1















(xi+1, yi+1) = P1(xi − a, yi − b)
(xi+2, yi+2) = P1(xi+1 − a, yi+1 − b)
(xi+3, yi+3) = P1(xi+2 − a, yi+2 − b)
(xi+4, yi+4) = P1(−xi+3 + xi+2,−yi+3 + yi+2)

(10)

The dynamics of the cell Φ1 is managed by:

{

xi ← xi+1

yi ← yi+1

(11)

The model given by the system 10 comprises a process which
repeats itself in four iterations of levels .

Being given an initial state of couple (x0, y0) and a couple
of constant (a, b).

The first iteration begins with the processing of P1 state vec-
tor (x0−a, y0−b) to provide an output of state (x1, y1). On
the second level of iteration, the P1 process treats the state
vector (x1−a, y1− b) for outputting a pair of ’state (x2, y2).
The previous couple is compared with the condition of con-
stant (a, b) that becomes a state vector for a coordinated
(x2− a, y2− b), this result is treated by P1 in the third level
iteration to give a state vector (x3, y3). The treatment of
P1 (x2− x3, y2 − y3) gives the vector (x4, y4). The behavior
of the output vector (xi+4, yi+4) for i iteration is shown in
Figure 1(b).
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(a) The graph

(b) Behavior of cell
process

Figure 1: A fractal cell

4. PROCESSES OF CELL DIVISION
This section presents the processes of reproduction and growth
by which the cells become divided into daughter cells.

1. Duplication

A type of mutation in which a portion of a genetic
material or a chromosome is duplicated or replicated,
resulting in multiple copies of that region.

2. Mitosis

Mitosis is a form of eukaryotic cell division that pro-
duces two daughter cells with the same genetic compo-
nents as the parent cell. Mitosis consists of continuous
processes, which are conventionally divided into five
stages: prophase, prometaphase, metaphase, anaphase
and telophase.

3. Meiosis

Mitosis creates two identical daughter cells that each
contain the same number of chromosomes as their par-
ent cell. In contrast, meiosis gives rise to four unique
daughter cells, each with half the number of chromo-
somes as the parent cell. Because meiosis creates cells
that are destined to become gametes (or reproductive
cells), this reduction in the number of chromosomes is
essential - without it, the union of two gametes during
fertilization would result in offspring with twice the
normal number of chromosomes. Like mitosis, meio-
sis also has distinct stages called prophase, metaphase,
anaphase and telophase. A key difference, however, is
that during meiosis, each of these phases occurs twice
- once during the first round of division, called meio-
sis I and again in the second round of division, called
meiosis II .

4. Metamorphosis

The change in the form or function and behaviour of
a living organism, by a natural process of growth or
development such as, the metamorphosis of the yolk
into the embryo, of a tadpole into a frog, or of a bud
into a blossom.

5. MATHEMATIC FORMULATION OF CON-
TROLS PROCESSES

5.1 Process control of duplication
P is a process applied in cascade with P2 states whose out-
puts P are inputs and the outputs of P2 will be reinfected
into the process P . The output state of P2 are elements of P
after k iterations, we obtain in terms of phase two processes
identical to P.

Theorem 5.1.1. Let P and P2 are two nonlinear dynamic
processes. If P is applied in cascade to n processes P2, so it
was the output of nth elements of P 2n process duplicated
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 a 

 

P 

 

P 

 

P 

 

Figure 2: Graph of duplication of process control

Figure 3: Duplication of number of leaf

Figure 4: Second example of duplication

5.2 Process control of division
Theorem 5.2.1. Let Pj and P1 two fractal processes, then

one has :

i) If we have Pj and P1 in cascades After treatment of (xi, yi)
by Pj, we obtain two output states (xi+1, yi+1)such that
Pj(xi, yi) = (xi+1, yi+1)

PC
Typewriter
94



ii) There exists β1 et β2∈ R such that the treatment by P1

of (xi+1 + β1, yi+1 + β2) divides Pj in two processes
identical similar as Pj.

Figure 6 represents the implementation of the model Graph
of model:

Figure 8 shows graph of model of a division process

α1 = K1, β1 = L1, α2 = K2 and β2 = L2
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L1 

 

L2 

 

Figure 5: Graph of dividing process

Figure 6 shows the implementation

• First example

(a) Fractal cell

(b) Two fractals cells

Figure 6: Control process divided the fractal cell in
two fractal similar

• Second example

(a) Other pattern of mother cell

(b) Two daughter cells

Figure 7: Two daughter identical cells

5.3 Multiplication process
Theorem 5.3.1. Let P , P1 and P2 three dynamical nu-

merical non linear processes, then one has :

i) After treatment of (xi, yi) by P , we obtain two output
states (xi+1, yi+1)such that P (xi, yi) = (xi+1, yi+1)

ii) There exists α1, α2, β1 et β2∈ R such that the treat-
ment by P1 of (α1xi+1 + β1, α2yi+1 + β2) gives two
output states xi+2 and yi+2.

iii) If we have n processes P2 in cascades, then the behavior
of nth process is equal to 2n behavior of states xi+2 and
yi+2. Moreover, the behavior at the end of n processes
is a form with a circular distribution of angles equal to
π
2n .

Proof :

Using the preceding result and the contraction principle, we
obtain the fundamental result of E. de Amo [6] and Hutchin-
son [7]

Figure 8 shows a model of the multiplication graph.
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(a) Processus

Figure 8: Graph of separation and multiplication

Simulation of process of multiplication

In some cases we validate the numerical implementation of
the theorem. Figure 10 shows the behavior

1. First example

Figure 9: Cells from separation process

Figure 10: 2 times multiplication(duplication)

2. Second example

Figure 11: Process after separation

Figure 12: Multiplication by 2

Figure 13: Multiplication by 4 in circle

The proliferation of cells is strongly linked to the number of
processes in cascades. These cells are distributed in circular
forms. The angle of cells is repertited equal to π

n
.

The antecedent process has the same behavior as the process
mother the only difference is on the level of dimension. The
copy is identical to the level of form and behavior.

5.4 Separation process
Theorem 5.4.1. Let P and P1 two nonlinear dynamic

processes.

Then:

i) Treatment by P of the two input xi and yi gives in two
output states xi+1 and yi+1.

ii) There exists two continuations Un and Vn double di-
mensional, of respective coefficients (αn, βn) and ((λn, µn))
such as the treatment by P1 from (αnxi+1+βn, λnyi+1+
µn), gives at exit the different phases of separation of
the process P into two identical processes.

Figure illustrates a graph of separation control process.
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Figure 14: Graph of separation control process

Simulation of separation process In the statement of the
preceding theorem the two continuations considered (αn, βn)
and ((λn, µn)) make it possible to illustrate the evolution of
process of separation of the course of time.

The results obtained show that the mother cell goes through
the following phases:

prophase, anaphase, metaphase, telophase and then sepa-
rates into two identical cells, so it could be a similar process
in genetic biology of mitosis.

Example 5.4.2.

(a) Process

(b) Interphase

(c) Metaphase (d) Anaphase

(e) Telophase (f) Two daughter cells

Figure 15: Mitosis

Figure 15 illustrates the process of different phases from sep-
aration from the fractal cell into two daughter cells, which is
in agreement with the process of figure 16 which shows the
different phases of the cellular division.

Figure 16: Process of mitosis in cell

The second example show a different stage of mitosis process

Example 5.4.3.

(a) Prophase (b) Metaphase

(c) Anaphase (d) Telophase

(e) Two daughters cells

Figure 17: Fractal cell in mitosis

The separation process is a process model of mitosis, which
is a continuous process, which is conventionally divided into
five stages: prophase, prometaphase, metaphase, anaphase
and telophase.

• Prophase: The figures 15(b) and 17(b) illustrate a be-
havior similar to the phase of prophase.

• Prometaphase The figures 15(c) and 17(c) illustrate a
behavior similar to the phase of prometaphase.

• Metaphase The figures 15(d) and 17(d) illustrate a be-
havior similar to the phase metaphase.

• Anaphase The figures 15(e) and 17(e) illustrate a be-
havior similar to the phase anaphase.

• Telophase The figures 15(f) and 17(e) illustrate a be-
havior similar to the phase of telophase.
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5.5 Metamorphosis
The change in the body and object structures in a state
of equilibrium i to a stable state which is a more stable
equilibrium i + 1 is a cycle of metamorphosis.

If the structure of a body or object does not change from
state i to the state i + 1, we say that the body or object is
at equilibrium or the absolute total convergence, then this
is the end of the cycle of metamorphosis.

We define the metamorphosis as the evolution of an object
from one cycle to cycle until full convergence.

Definition 5.5.1. Let P be a dynamic process. Suppose
that there exists n ∈ N \ {0, 1} such that the association
result of P in n cascades is identical to that of P in (n + 1)
cascades. Then a such n is called the convergence order of
P .

Theorem 5.5.2. There exists a unique A ∈ H(X) such
that P n(A) = A. The set A is called the attractor of the
process P[6]

The following table shows the number of cascade process P5.

Process n cascades Figure:
P5 n = 2 Fig: 18(b)
P5 n = 3 Fig: 18(c)
P5 n = 4 Fig: 18(d)
P5 n = 5 Fig: 18(e)
P5 n = 6 Fig: 18(f)
P5 n = 7 Fig: 18(g)
P5 n = 8 Fig: 18(h)
P5 n = 9 Fig: 18(i)
P5 n = 10 Fig: 18(j)

Table 1: Metamorphosis of cell generated by process
P5

(a) n=1 (b) n=2 (c) n=3 (d) n=4

(e) n=5 (f) n=6 (g) n=7 (h) n=8

(i) n=9 (j) n=10

Figure 18: Metamorphose process of cell generated
by P5

Figure 18 shows the evolution process P5. For all n > 10the
P5 process shows the same behavior as for n = 10. The
metamorphosis process P5 for convergence order n = 10.
Figure 18(j) is the attractor process P5.

6. CONCLUSION
The results of this work demonstrate the capacity of fractal
theory to model processes in biology. We have developed a
new class of control applied in biology such as cell division
processes.

The following conclusions were derived from the current
work:

• We have elaborated a new methodology of generating
a fractal cell.

• We started by giving an overview of processes of cell
division in genetic biology.

• We have presented four control fractal processes such
as duplication, multiplication, separation and divide
process.

• We have implemented algorithms to prove our approach
with examples.
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